| 
 | 
 
 
- import streamlit as st
 
 - from skimage import io
 
 - from skimage.transform import resize
 
  
- import numpy as np
 
  
- import tensorflow as tf
 
  
- model = tf.keras.models.load_model('./mnist_model.h5')
 
 - uploaded_file = st.file_uploader("上傳圖片(.png)",type="png")
 
  
- if uploaded_file is not None:
 
 -     image1 = io.imread(uploaded_file, as_gray=True)
 
 -     image_resized = resize(image1,(28,28), anti_aliasing=True)
 
 -     X1 = image_resized.reshape(1,28,28,1)
 
 -     X1 = np.abs(1-X1)
 
  
-     predictions = model.predict_classes(X1)[0]
 
 -     st.write(f'預測結果:{predictions}')
 
 -     st.image(image1)
 
  複製代碼 錯誤代碼
python pycharm h5py 
 
 
 
- ImportError: Filepath looks like a hdf5 file but h5pyis not available
 
  複製代碼 上面敘述加入 
 
在Termainal 
輸入 
- streamlit run D:\scrapytest\img-read.py
 
  複製代碼 
 
這時又出現錯誤 
- 'Sequential' object has no attribute 'predict_classes'
 
  複製代碼 
python pycharm h5py 
 
 
 
代碼 
- predictions = model.predict_classes(X1)[0]
 
 -     st.write(f'預測結果:{predictions}')
 
 -     st.image(image1)
 
  複製代碼 
 
 
改成 
- # 預測
 
 -     predictions = model.predict(X1)
 
 -     classes_x = np.argmax(predictions, axis=1)
 
 -     # 顯示預測結果
 
 -     st.write(f'預測結果:{classes_x}')
 
  複製代碼 
 
就正常了
python pycharm h5py 
 
 
 
參考文章 
https://www.cjavapy.com/article/2239/ 
 
 |   
 
 
 
 |